Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.563
Filtrar
1.
J Am Chem Soc ; 146(15): 10393-10406, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569115

RESUMO

Covalent chemistry coupled with activity-based protein profiling (ABPP) offers a versatile way to discover ligands for proteins in native biological systems. Here, we describe a set of stereo- and regiochemically defined spirocycle acrylamides and the analysis of these electrophilic "stereoprobes" in human cancer cells by cysteine-directed ABPP. Despite showing attenuated reactivity compared to structurally related azetidine acrylamide stereoprobes, the spirocycle acrylamides preferentially liganded specific cysteines on diverse protein classes. One compound termed ZL-12A promoted the degradation of the TFIIH helicase ERCC3. Interestingly, ZL-12A reacts with the same cysteine (C342) in ERCC3 as the natural product triptolide, which did not lead to ERCC3 degradation but instead causes collateral loss of RNA polymerases. ZL-12A and triptolide cross-antagonized one another's protein degradation profiles. Finally, we provide evidence that the antihypertension drug spironolactone─previously found to promote ERCC3 degradation through an enigmatic mechanism─also reacts with ERCC3_C342. Our findings thus describe monofunctional degraders of ERCC3 and highlight how covalent ligands targeting the same cysteine can produce strikingly different functional outcomes.


Assuntos
Acrilamida , Diterpenos , Fenantrenos , Humanos , Cisteína/química , Proteômica , Compostos de Epóxi
2.
Anal Methods ; 16(15): 2386-2399, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38572640

RESUMO

A novel fluorescence sensor based on a porphyrinic zirconium-based metal-organic framework, L-cysteine-modified PCN-222 (L-Cys/PCN-222), was developed to selectively recognize histidine enantiomers and sensitively detect Hg2+. The dual-functional sensor was successfully prepared via the solvent-assisted ligand incorporation method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), 1H nuclear magnetic resonance (1H NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption analyses. L-Cys/PCN-222 not only showed a higher quenching response for L-histidine than that for D-histidine with a fast fluorescent response rate of <40 s but also exhibited low detection limits for L- and D-histidine (2.48 µmol L-1 and 3.85 µmol L-1, respectively). Moreover, L-Cys/PCN-222 was employed as a fluorescent and visual sensor for the highly sensitive detection of Hg2+ in the linear range of 10-500 µmol L-1, and the detection limit was calculated to be 2.79 µmol L-1 in surface water. The specific and selective recognition of chiral compounds and metal ions by our probe make it suitable for real field applications.


Assuntos
Mercúrio , Estruturas Metalorgânicas , Espectroscopia de Infravermelho com Transformada de Fourier , Histidina , Estruturas Metalorgânicas/química , Zircônio , Cisteína/análise , Cisteína/química , Corantes Fluorescentes/química , Mercúrio/análise
3.
Bioconjug Chem ; 35(4): 457-464, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38548654

RESUMO

Antibody-drug conjugates (ADCs) have emerged as a powerful class of anticancer therapeutics that enable the selective delivery of toxic payloads into target cells. There is increasing appreciation for the importance of synthesizing such ADCs in a defined manner where the payload is attached at specific permissive sites on the antibody with a defined drug to antibody ratio. Additionally, the ability to systematically alter the site of attachment is important to fine-tune the therapeutic properties of the ADC. Engineered cysteine residues have been used to achieve such site-specific programmable attachment of drug molecules onto antibodies. However, engineered cysteine residues on antibodies often get "disulfide-capped" during secretion and require reductive regeneration prior to conjugation. This reductive step also reduces structurally important disulfide bonds in the antibody itself, which must be regenerated through oxidation. This multistep, cumbersome process reduces the efficiency of conjugation and presents logistical challenges. Additionally, certain engineered cysteine sites are resistant to reductive regeneration, limiting their utility and the overall scope of this conjugation strategy. In this work, we utilize a genetically encoded photocaged cysteine residue that can be site-specifically installed into the antibody. This photocaged amino acid can be efficiently decaged using light, revealing a free cysteine residue available for conjugation without disrupting the antibody structure. We show that this ncAA can be incorporated at several positions within full-length recombinant trastuzumab and decaged efficiently. We further used this method to generate a functional ADC site-specifically modified with monomethyl auristatin F (MMAF).


Assuntos
Antineoplásicos , Imunoconjugados , Cisteína/química , Antineoplásicos/química , Compostos de Sulfidrila , Anticorpos/química , Imunoconjugados/química , Dissulfetos
4.
Chem Res Toxicol ; 37(4): 620-632, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484110

RESUMO

As a vital micronutrient, zinc is integral to the structure, function, and signaling networks of diverse proteins. Dysregulated zinc levels, due to either excess intake or deficiency, are associated with a spectrum of health disorders. In this context, understanding zinc-regulated biological processes at the molecular level holds significant relevance to public health and clinical practice. Identifying and characterizing zinc-regulated proteins in their diverse proteoforms, however, remain a difficult task in advancing zinc biology. Herein, we address this challenge by developing a quantitative chemical proteomics platform that globally profiles the reactivities of proteinaceous cysteines upon cellular zinc depletion. Exploiting a protein-conjugated resin for the selective removal of Zn2+ from culture media, we identify an array of zinc-sensitive cysteines on proteins with diverse functions based on their increased reactivity upon zinc depletion. Notably, we find that zinc regulates the enzymatic activities, post-translational modifications, and subcellular distributions of selected target proteins such as peroxiredoxin 6 (PRDX6), platelet-activating factor acetylhydrolase IB subunit alpha1 (PAFAH1B3), and phosphoglycerate kinase (PGK1).


Assuntos
Cisteína , Zinco , Cisteína/química , Zinco/metabolismo , Proteínas/química
5.
Anal Chem ; 96(13): 5331-5339, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498948

RESUMO

At present, there is a lack of sufficiently specific laboratory diagnostic indicators for schizophrenia. Serum homocysteine (Hcy) levels have been found to be related to schizophrenia. Cysteine (Cys) is a demethylation product in the metabolism of Hcy, and they always coexist with highly similar structures in vivo. There are few reports on the use of Cys as a diagnostic biomarker for schizophrenia in collaboration with Hcy, mainly because the rapid, economical, accurate, and high-throughput simultaneous detection of Cys and Hcy in serum is highly challenging. Herein, a click reaction-based surface-enhanced Raman spectroscopy (SERS) sensor was developed for simultaneous and selective detection of Cys and Hcy. Through the efficient and specific CBT-Cys click reaction between the probe containing cyan benzothiazole and Cys/Hcy, the tiny methylene difference between the molecular structures of Cys and Hcy was converted into the difference between the ring skeletons of the corresponding products that could be identified by plasmonic silver nanoparticle enhanced molecular fingerprint spectroscopy to realize discriminative detection. Furthermore, the SERS sensor was successfully applied to the detection in related patient serum samples, and it was found that the combined analysis of Cys and Hcy can improve the diagnostic accuracy of schizophrenia compared to a single indicator.


Assuntos
Nanopartículas Metálicas , Esquizofrenia , Humanos , Cisteína/química , Células HeLa , Esquizofrenia/diagnóstico , Corantes Fluorescentes/química , Prata , Espectrometria de Fluorescência/métodos , Homocisteína , Glutationa/análise
6.
Bioorg Chem ; 146: 107260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457954

RESUMO

Cysteine (Cys) as a crucial precursor for intracellular glutathione (GSH) synthesis, plays an important role in the redox regulation in ferroptosis, Therefore, evaluating intracellular Cys levels is worthy to better understand ferroptosis-related physiological process. In this work, we constructed a novel NIR coumarin-derived fluorescent probe (NCDFP-Cys) based on a dual-ICT system, the NCDFP-Cys can show fluorescence turn-on response at 717 nm toward Cys over other amino acids, and possess large Stokes shift (Δλ = 167 nm), low detection limit, hypotoxicity. More significantly, NCDFP-Cys has been utilized to monitor the intracellular Cys fluctuation in pancreatic cancer cells during ferroptosis induced by Erastin and RSL3 respectively, and revealing the difference of Cys levels changes in different activator-triggered ferroptosis pathways.


Assuntos
Ferroptose , Neoplasias Pancreáticas , Humanos , Células HeLa , Cisteína/química , Corantes Fluorescentes/química , Glutationa/metabolismo
7.
Anal Methods ; 16(15): 2322-2329, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38533729

RESUMO

Cysteine is an important amino acid that is related to human health and food safety. How to effectively detect Cys in food has received widespread attention. Compared with other methods, fluorescent probes have the advantages of simple operation, high sensitivity, and good selectivity. Therefore, a selective fluorescence probe 2 for Cys in food was designed and synthesized. Probe 2 employed the acrylate group as a thiol-recognition site for Cys, which endowed probe 2 with better selectivity for Cys over Hcy and GSH. The recognition pathway underwent Michael addition, intramolecular cyclization, and concomitant release of the piperideine-based fluorophore, along with a chromogenic change from yellow to orange. This pathway was supported by 1H NMR analysis and DFT calculations. In addition, probe 2 displays a linear response to Cys concentrations (0-30 µM), low detection limit (0.89 µM), and large Stokes shift (125 nm). Overall, probe 2 showed great application potential for the quantitative determination of Cys in water, milk, cucumber, pear and tomato.


Assuntos
Cucumis sativus , Pyrus , Solanum lycopersicum , Humanos , Animais , Cisteína/análise , Cisteína/química , Cisteína/metabolismo , Cucumis sativus/metabolismo , Corantes Fluorescentes/química , Pyrus/metabolismo , Colorimetria/métodos , Água , Leite/química , Leite/metabolismo , Células HeLa
8.
Chem Commun (Camb) ; 60(27): 3725-3728, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38482888

RESUMO

Chemical labeling methods for proteins are highly researched. Herein, we introduced ß-carbonyl sulfonium compounds for selective cysteine modification in proteins within biological systems. Structural tuning led to sulfonium-based probes with high reactivity and selectivity. These probes show excellent biocompatibility, cell uptake, and specificity towards cysteine profiling in live cells.


Assuntos
Cisteína , Compostos de Sulfônio , Cisteína/química , Proteínas/química , Compostos de Sulfônio/química
9.
J Inorg Biochem ; 254: 112518, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38460483

RESUMO

Cisplatin is widely used as anticancer drugs, and DNA is considered as the main target. Considering its high affinity towards cysteines and the important role of cystine containing proteins, we applied a competitive activity-based protein profiling strategy to identify protein cysteines that bind with cisplatin in HeLa cells. Living cells were treated with cisplatin at cytotoxic concentrations, then the protein was extracted. After labeling with desthiobiotin iodoacetamide (DBIA) probe, protein was precipitated, digested and isotopically labeled, subsequently the peptides were combined, and the biotinylated cysteine-containing peptides were enriched and quantified by LC-MS/MS. A total of 3571 peptides which originated from 1871 proteins were identified using the DBIA probe. Among them, 46 proteins were screened as targets, including proteins that have been identified as binding proteins by previous study. A novel cisplatin target, calpain-1 (CAPN1), was identified and validated as binding with cisplatin in vitro.


Assuntos
Antineoplásicos , Cisplatino , Humanos , Cisplatino/farmacologia , Cisplatino/química , Cromatografia Líquida , Células HeLa , Espectrometria de Massas em Tandem , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteínas , Cisteína/química , Peptídeos
10.
Org Lett ; 26(13): 2590-2595, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38517348

RESUMO

In this Letter, we report a direct and robust desulfurization method employing water-soluble phosphine, specifically tris(2-carboxyethyl)phosphine hydrochloride (TCEP), and tetrahydroxydiboron (B2(OH)4), which serves as a radical initiator. This innovative reaction exhibits compatibility with a diverse array of substrates, including cysteine residues in chemically synthesized oligopeptides and cyclic peptides, alkyl thiols in bioactive molecules, disulfides in commercial proteins, and selenocysteine. We optimized the reaction conditions to minimize the formation of undesired oxidized and borylated byproducts. Furthermore, the refined desulfurization process is executed after native chemical ligation (NCL) in a single pot, streamlining the existing synthetic approaches. This demonstrates its potential applications in the synthesis of complex peptides and proteins, showcasing a significant advancement in the field.


Assuntos
Peptídeos , Proteínas , Indicadores e Reagentes , Peptídeos/química , Proteínas/química , Cisteína/química , Compostos de Sulfidrila/química
11.
Sci Rep ; 14(1): 3026, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321125

RESUMO

[NiFe]-hydrogenases have a bimetallic NiFe(CN)2CO cofactor in their large, catalytic subunit. The 136 Da Fe(CN)2CO group of this cofactor is preassembled on a distinct HypC-HypD scaffold complex, but the intracellular source of the iron ion is unresolved. Native mass spectrometric analysis of HypCD complexes defined the [4Fe-4S] cluster associated with HypD and identified + 26 to 28 Da and + 136 Da modifications specifically associated with HypC. A HypCC2A variant without the essential conserved N-terminal cysteine residue dissociated from its complex with native HypD lacked all modifications. Native HypC dissociated from HypCD complexes isolated from Escherichia coli strains deleted for the iscS or iscU genes, encoding core components of the Isc iron-sulfur cluster biogenesis machinery, specifically lacked the + 136 Da modification, but this was retained on HypC from suf mutants. The presence or absence of the + 136 Da modification on the HypCD complex correlated with the hydrogenase enzyme activity profiles of the respective mutant strains. Notably, the [4Fe-4S] cluster on HypD was identified in all HypCD complexes analyzed. These results suggest that the iron of the Fe(CN)2CO group on HypCD derives from the Isc machinery, while either the Isc or the Suf machinery can deliver the [4Fe-4S] cluster to HypD.


Assuntos
Proteínas de Escherichia coli , Hidrogenase , Proteínas Ferro-Enxofre , Escherichia coli/genética , Ferro/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrogenase/metabolismo , Domínio Catalítico , Cisteína/química
12.
Chemistry ; 30(22): e202304216, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38356034

RESUMO

Bismuth is a xenobiotic metal with a high affinity to sulfur that is used in a variety of therapeutic applications. Bi(III) induces the cysteine-rich metallothionein (MT), a protein known to form two-domain cluster structures with certain metals such as Zn(II), Cd(II), or Cu(I). The binding of Bi(III) to MTs has been previously studied, but there are conflicting reports on the stoichiometry and binding pathway, which appear to be highly dependent on pH and initial metal-loading status of the MT. Additionally, domain specificity has not been thoroughly investigated. In this paper, ESI-MS was used to determine the binding constants of [Bi(EDTA)]- binding to apo-MT1a and its individual αMT fragment. The results were compared to previous experiments using ßMT1a and ßαMT3. Domain specificity was investigated using proteolysis methods and the initial cooperatively formed Bi2MT was found to bind to cysteines that spanned across the traditional metal binding domain regions. Titrations of [Bi(EDTA)]- into Zn7MT were performed and were found to result in a maximum stoichiometry of Bi7MT, contrasting the Bi6MT formed when [Bi(EDTA)]- was added to apo-MT. These results show that the initial structure of the apo-MT determines the stoichiometry of new incoming metals and explains the previously observed differences in stoichiometry.


Assuntos
Bismuto , Cisteína , Humanos , Ácido Edético , Bismuto/química , Cisteína/química , Metalotioneína/química , Zinco/química , Ligação Proteica , Cádmio/química , Sítios de Ligação
13.
Anal Chem ; 96(10): 4057-4066, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38407829

RESUMO

Disulfide bridges in peptides and proteins play an essential role in maintaining their conformation, structural integrity, and consequently function. Despite ongoing efforts, it is still not possible to detect disulfide bonds and the connectivity of multiply bridged peptides directly through a simple and sufficiently validated protein sequencing or peptide mapping method. Partial or complete reduction and chemical cysteine modification are required as initial steps, followed by the application of a proper detection method. Edman degradation (ED) has been used for primary sequence determination but is largely neglected since the establishment of mass spectrometry (MS)-based protein sequencing. Here, we evaluated and thoroughly characterized the phenyl thiohydantoin (PTH) cysteine derivatives PTH-S-methyl cysteine and PTH-S-carbamidomethyl cysteine as bioanalytical standards for cysteine detection and quantification as well as for the elucidation of the disulfide connectivity in peptides by ED. Validation of the established derivatives was performed according to the guidelines of the International Committee of Harmonization on bioanalytical method validation, and their analytical properties were confirmed as reference standards. A series of model peptides was sequenced to test the usability of the PTH-Cys-derivatives as standards, whereas the native disulfide-bonded peptides CCAP-vil, µ-conotoxin KIIIA, and human insulin were used as case studies to determine their disulfide bond connectivity completely independent of MS analysis.


Assuntos
Cisteína , Dissulfetos , Humanos , Cisteína/química , Dissulfetos/química , Peptídeos/química , Proteínas , Sequência de Aminoácidos
14.
Anal Sci ; 40(4): 765-772, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358582

RESUMO

As one of the most fundamental thiol compounds in the human body, cysteine (Cys) is involved in maintaining redox balance. Abnormal Cys levels can lead to various diseases. In this work, we successfully synthesized a fluorescent probe (CTBA) that can specifically detect Cys using acrylate as the reaction site, and CTBA has met the selectivity and anti-interference for Cys detection under optimized conditions. The linear range for Cys detection is between 0.05 and 100 µM and the detection limit is 0.0381 µM. Finally, this probe is used to detect the Cys content in three bovine serum samples and the test results are satisfactory.


Assuntos
Cisteína , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Cisteína/química , Células HeLa , Limite de Detecção , Espectrometria de Fluorescência/métodos
15.
Anal Bioanal Chem ; 416(8): 1951-1959, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324071

RESUMO

To conveniently monitor bioactive cysteine (Cys) and Fe2+ in practice, a kind of poly-ß-cyclodextrin strengthen praseodymium oxide (Pr6O11) porous oxidase mimic (p-ß-CD@Pr6O11) was constructed by virtue of the strong coordination between nano Pr6O11 and poly-ß-cyclodextrin substrate. After its microstructure and physicochemical property were characterized in detail, it was noted that porous p-ß-CD@Pr6O11 exhibited excellent enzyme-like catalytic activity to accelerate the oxidation of 3,3',5,5,'-tetramethylbanzidine (TMB) and 2,2'-azinobis (3-ethylbenzo-thiazoline-6-sulfonic acid) ammonium salt (ABTS) with significant color-enhancement effect in the air. Based on the signal amplification, trace Cys could exclusively deteriorate the UV-vis absorbance at 653 nm of p-ß-CD@Pr6O11-TMB and Fe2+ alter the one at 729 nm of p-ß-CD@Pr6O11-ABTS with visual color changes. Under the optimized conditions, the proposed p-ß-CD@Pr6O11-TMB and p-ß-CD@Pr6O11-ABTS systems were successfully applied for dual-channel monitoring of Cys in Cys capsules and fetal bovine serum and Fe2+ in agricultural products with quite low detection limits, i.e., 7.8×10-9 mol·L-1 for Cys and 6.93×10-8 mol·L-1 (S/N=3) for Fe2+, respectively. The synergetic-enhancement detection mechanisms to Cys and Fe2+ were also proposed.


Assuntos
Benzotiazóis , Oxirredutases , Ácidos Sulfônicos , beta-Ciclodextrinas , Cisteína/química , Porosidade , beta-Ciclodextrinas/química , Colorimetria
16.
Food Chem ; 444: 138508, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38340502

RESUMO

The effects of different l-Cysteine additions (0-2 %) on the gel properties, microstructure and physicochemical stability of sheep plasma protein gels were studied. The introduction of l-Cys significantly improved the water retention capacity and whiteness of the plasma protein gel (p < 0.05). The addition of 0.2 %-0.4 % l-Cys increased gel strength, but l-Cys had no significant effect on gel elasticity (p < 0.05). Scanning electron microscopy confirmed that the addition of l-Cys also promoted the formation of a porous three-dimensional network structure in the gel. Raman spectroscopy and SDS-PAGE revealed that the addition of l-Cys generally reduced α-helix structures in protein gels and promoted the formation of ß-folds. Addition of 0.2 % l-Cys treatment leading to the greatest increase in disulfide bonds, and its surface hydrophobicity and endogenous fluorescence intensity were the largest. At this time, the comprehensive performance of sheep plasma protein gel is the best performance.


Assuntos
Cisteína , Temperatura Alta , Animais , Ovinos , Cisteína/química , Géis/química , Proteínas Sanguíneas , Conformação Proteica em alfa-Hélice , Água/química
17.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 181-193, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372589

RESUMO

Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development.


Assuntos
Actinobacteria , Glicopeptídeos , Inositol , NADH NADPH Oxirredutases , Oxirredutases , Oxirredutases/metabolismo , Compostos de Sulfidrila/química , Cisteína/química , Cisteína/metabolismo , Oxirredução
18.
Molecules ; 29(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338299

RESUMO

Monitoring the level of biothiols in organisms would be beneficial for health inspections. Recently, 3-(2'-nitro vinyl)-4-phenylselenyl coumarin as a fluorescent probe for distinguishing the detection of the small-molecule biothiols cysteine/homocysteine (Cys/Hcy) and glutathione (GSH) was developed. By introducing 4-phenyselenium as the active site, the probe CouSeNO2/CouSNO2 was capable of detecting Cys/Hcy and GSH in dual fluorescence channels. Theoretical insights into the fluorescence sensing mechanism of the probe were provided in this work. The details of the electron excitation process in the probe and sensing products under optical excitation and the fluorescent character were analyzed using the quantum mechanical method. All these theoretical results would provide insight and pave the way for the molecular design of fluorescent probes for the detection of biothiols.


Assuntos
Cisteína , Corantes Fluorescentes , Corantes Fluorescentes/química , Cisteína/química , Glutationa/química , Cumarínicos/química , Espectrometria de Fluorescência/métodos , Homocisteína
19.
Talanta ; 271: 125758, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340415

RESUMO

Au nanoparticles (AuNPs) are decorated by l-cysteine (L-Cys), and the resultant chiral L-Cys/AuNPs can be used for colorimetric discrimination and spectroscopic detection of the tyrosine (Tyr) enantiomers. Melamine (Mel) can induce the aggregation of the L-Cys/AuNPs through ligand exchange, leading to a distinct color change from wine red to purple. Owing to the same rotatory direction of L-Cys/AuNPs and L-Tyr, the L-Cys/AuNPs exhibit a significantly higher binding affinity toward L-Tyr than D-Tyr, and thus the Mel induced aggregation of the L-Cys/AuNPs is greatly alleviated by the protection from the L-Tyr protective layer. Therefore, the Tyr enantiomers can be simply discriminated by naked eyes. In addition, the absorbance of the aggregated L-Cys/AuNPs at ∼630 nm increases linearly with decreasing concentrations of L-Tyr ranging from 10 nM to 1 mM due to the weakened protection effect from L-Tyr, and thus spectroscopic detection of L-Tyr can also be accomplished by the developed L-Cys/AuNPs with a limit of detection (LOD) of 5.3 nM.


Assuntos
Cisteína , Nanopartículas Metálicas , Triazinas , Cisteína/química , Colorimetria/métodos , Ouro/química , Tirosina , Nanopartículas Metálicas/química
20.
Food Chem ; 445: 138398, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394903

RESUMO

A protein hydrolysate of goat viscera added with xylose, cysteine, and thiamine under different pH was used to prepare a meat flavoring. Goat viscera hydrolysate and flavoring were subjected to analysis of physicochemical characteristics, amino acid profile, sugars, fatty acids, and volatile profile. Meat aroma characteristics were initiated in the hydrolysate, in which Strecker's pyrazines and aldehydes were identified, which also had fatty acids and amino acids available for the formation of 96 volatile compounds in the flavorings via lipid manipulation, Maillard occurrence, Strecker manipulation and interactions among these means. Maillard reaction products with intense meat aroma, such as 2-methyl-3-furanthiol, 2-furfurylthiol and, bis(2-methyl-3-furyl) disulfide were isolated only in the flavoring at pH 4. In contrast, the flavoring at pH 6 showed a higher concentration than all the other compounds, providing a lower meat characteristic, but an intense sweet, fatty and goat aroma.


Assuntos
Cisteína , Reação de Maillard , Animais , Cisteína/química , Tiamina/análise , Xilose/química , Hidrolisados de Proteína , Cabras , Aromatizantes/análise , Carne/análise , Ácidos Graxos , Odorantes/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...